2 resultados para Aesculapius Awards Ceremony
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
We study bankruptcy games where the estate and the claims have stochastic values. We use the Weak Sequential Core as the solution concept for such games. We test the stability of a number of well known division rules in this stochastic setting and find that most of them are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
A kooperatív játékelmélet egyik legjelentősebb eredménye, hogy számos konfliktushelyzetben stabil megoldást nyújt. Ez azonban csak statikus és determinisztikus környezetben alkalmazható jól. Most megmutatjuk a mag egy olyan kiterjesztését - a gyenge szekvenciális magot -, amely képes valós, dinamikus, bizonytalan környezetben is eligazítást nyújtani. A megoldást a csődjátékok példájára alkalmazzuk, és segítségével megvizsgáljuk, hogy a pénzügyi irodalom ismert elosztási szabályai közül melyek vezetnek stabil, fenntartható eredményre. _______ One of the most important achievements of cooperative game theory is to provide a stable solution to numerous conflicts. The solutions it presents, on the other hand, have been limited to situations in a static, deterministic environment. The paper examines how the core can be extended to a more realistic, dynamic and uncertain scenario. The bankruptcy games studied are ones where the value of the estate and of the claims are stochastic, and a Weak Sequential Core is used as the solution concept for them. The author tests the stability of a number of well known division rules in this stochastic setting and finds that most are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.