25 resultados para Cooperative games (Mathematics)
Resumo:
We study bankruptcy games where the estate and the claims have stochastic values. We use the Weak Sequential Core as the solution concept for such games. We test the stability of a number of well known division rules in this stochastic setting and find that most of them are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
We introduce the concept of a TUU-game, a transferable utility game with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferable utility game. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TUgames are convex.
Resumo:
We introduce the concept of a TUU-game, a transferableutilitygame with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferableutilitygame. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TU-games are convex.
Resumo:
This paper addresses a problem with an argument in Kranich, Perea, and Peters (2005) supporting their definition of the Weak Sequential Core and their characterization result. We also provide the remedy, a modification of the definition, to rescue the characterization.
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
We consider the problem of axiomatizing the Shapley value on the class of assignment games. We first show that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games by providing alternative solutions that satisfy these axioms. However, when considering an assignment game as a communication graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph buyers are connected with sellers only, we show that Myerson's component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.
Resumo:
We consider von Neumann -- Morgenstern stable sets in assignment games with one seller and many buyers. We prove that a set of imputations is a stable set if and only if it is the graph of a certain type of continuous and monotone function. This characterization enables us to interpret the standards of behavior encompassed by the various stable sets as possible outcomes of well-known auction procedures when groups of buyers may form bidder rings. We also show that the union of all stable sets can be described as the union of convex polytopes all of whose vertices are marginal contribution payoff vectors. Consequently, each stable set is contained in the Weber set. The Shapley value, however, typically falls outside the union of all stable sets.
Resumo:
We consider various lexicographic allocation procedures for coalitional games with transferable utility where the payoffs are computed in an externally given order of the players. The common feature of the methods is that if the allocation is in the core, it is an extreme point of the core. We first investigate the general relationship between these allocations and obtain two hierarchies on the class of balanced games. Secondly, we focus on assignment games and sharpen some of these general relationship. Our main result is the coincidence of the sets of lemarals (vectors of lexicographic maxima over the set of dual coalitionally rational payoff vectors), lemacols (vectors of lexicographic maxima over the core) and extreme core points. As byproducts, we show that, similarly to the core and the coalitionally rational payoff set, also the dual coalitionally rational payoff set of an assignment game is determined by the individual and mixed-pair coalitions, and present an efficient and elementary way to compute these basic dual coalitional values. This provides a way to compute the Alexia value (the average of all lemacols) with no need to obtain the whole coalitional function of the dual assignment game.
Resumo:
We examine assignment games, wherematched pairs of firms and workers create some monetary value to distribute among themselves and the agents aim to maximize their payoff. In the majority of this literature, externalities - in the sense that a pair’s value depends on the pairing of the others - have been neglected. However, inmost applications a firm’s success depends on, say, the success of its rivals and suppliers. Thus, it is natural to ask how the classical results on assignment games are affected by the introduction of externalities? The answer is – dramatically. We find that (i) a problem may have no stable outcome, (ii) stable outcomes can be inefficient (not maximize total value), (iii) efficient outcomes can be unstable, and (iv) the set of stable outcomes may not form a lattice. We show that stable outcomes always exist if agents are "pessimistic." This is a knife-edge result: there are problems in which the slightest optimism by a single pair erases all stable outcomes.
Resumo:
Social dilemmas, in particular the prisoners' dilemma, are represented as congestion games, and within this framework soft correlated equilibria as introduced by Forgó F. (2010, A generalization of correlated equilibrium: A new protocol. Mathematical Social Sciences 60:186-190) is used to improve inferior Nash payoffs that are characteristic of social dilemmas. These games can be extended to several players in different ways preserving some important characteristics of the original 2-person game. In one of the most frequently studied models of the n-person prisoners' dilemma game we measure the performance of the soft correlated equilibrium by the mediation and enforcement values. For general prisoners' dilemma games the mediation value is ∞, the enforcement value is 2. This also holds for the class of separable prisoners’ dilemma games.