42 resultados para zeros of Gram polynomials
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper we survey work on and around the following conjecture, which was first stated about 45 years ago: If all the zeros of an algebraic polynomial p (of degree n ≥ 2) lie in a disk with radius r, then, for each zero z1 of p, the disk with center z1 and radius r contains at least one zero of the derivative p′ . Until now, this conjecture has been proved for n ≤ 8 only. We also put the conjecture in a more general framework involving higher order derivatives and sets defined by the zeros of the polynomials.
Resumo:
∗ Research partially supported by INTAS grant 97-1644
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C45
Resumo:
2000 Mathematics Subject Classification: Primary 34C07, secondary 34C08.
Resumo:
Георги С. Бойчев - В статията се разглежда метод за сумиране на редове, дефиниран чрез полиномите на Ермит. За този метод на сумиране са дадени някои Тауберови теореми.
Resumo:
2002 Mathematics Subject Classification: Primary 35В05; Secondary 35L15
Resumo:
In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s little known and hardly ever used matrix of 1853, to compute(2) the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] of degree n — in terms of the determinants (3) of the corresponding submatrices of sylvester2. Thus, they solved a problem that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900. (4) In this paper we extend the work by Pell and Gordon and show how to compute (2) the coefficients of an Euclidean remainder — obtained in finding in Q[x], the greatest common divisor of f, g ∈ Z[x] of degree n — in terms of the determinants (5) of the corresponding submatrices of sylvester1, Sylvester’s widely known and used matrix of 1840. (1) See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biography (2) Both for complete and incomplete sequences, as defined in the sequel. (3) Also known as modified subresultants. (4) Using determinants Sylvester and Van Vleck were able to compute the coefficients of Sturmian remainders only for the case of complete sequences. (5) Also known as (proper) subresultants.
Resumo:
2000 Mathematics Subject Classification: 30B40, 30B10, 30C15, 31A15.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
AMS Subject Classification 2010: 11M26, 33C45, 42A38.
Resumo:
2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.
Resumo:
This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.
Resumo:
MSC 2010: 30C10