9 resultados para weighted finite difference approximation scheme

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65M06, 65M12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65M06, 65M12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an optimized algorithm, which is faster compared to previously described finite difference acceleration scheme, namely the Modified Super-Time-Stepping (Modified STS) scheme for age-structured population models with difusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an optimized algorithm, which is faster compared to previously described finite difference acceleration scheme, namely the Modified Super-Time-Stepping (Modified STS) scheme for age- structured population models with diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 49J52, 90C30.