6 resultados para user data

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of automatic graphic user interface construction is described. It is based on the building of user interface as reflection of the data domain logical definition. The submitted approach to development of the information system user interface enables dynamic adaptation of the system during their operation. This approach is used for creation of information systems based on CASE-system METAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PRELIDA (PREserving LInked DAta) is an FP7 Coordination Action funded by the European Commission under the Digital Preservation Theme. PRELIDA targets the particular stakeholders of the Linked Data community, including data providers, service providers, technology providers and end user communities. These stakeholders have not been traditionally targeted by the Digital Preservation community, and are typically not aware of the digital preservation solutions already available. So an important task of PRELIDA is to raise awareness of existing preservation solutions and to facilitate their uptake. At the same time, the Linked Data cloud has specific characteristics in terms of structuring, interlinkage, dynamicity and distribution that pose new challenges to the preservation community. PRELIDA organises in-depth discussions among the two communities to identify which of these characteristics require novel solutions, and to develop road maps for addressing the new challenges. PRELIDA will complete its lifecycle at the end of this year, and the talk will report about the major findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): D.2.11, D.1.3, D.3.1, J.3, C.2.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.