3 resultados para tracking of explosives
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.
Resumo:
Organizations are seeking new, integrated systems that enable rapid changes through early identification of opportunities and problems, tracking of progress against plans, flexible allocation of resources to achieve goals, and consistent operations. Total Quality Management (TQM) is an overall business strategy. It means that all activities of the company will be focused on satisfying all stakeholders of the company. TQM can be realised by using the EFQM model. The EFQM model is a tool that organizations may use as a framework for self-evaluation that enables an organization to identify its strengths and areas for improvement and the extent to which its operations and results are in line with the characteristics of an excellent organization. We focus on a training organisation or to the learning department of an organization. So we are limiting the EFQM model to the training /learning activities. We can apply EFQM perfect on the level of an activity (business line) of a company. We selected the main criteria for which the learner can play the role of assessor. So only three main criteria left: the enabling resources, the enabling processes and the (learning) results for the learner. We limited the last one to “learning results” based on the Kirkpatrick model.
Bottleneck Problem Solution using Biological Models of Attention in High Resolution Tracking Sensors
Resumo:
Every high resolution imaging system suffers from the bottleneck problem. This problem relates to the huge amount of data transmission from the sensor array to a digital signal processing (DSP) and to bottleneck in performance, caused by the requirement to process a large amount of information in parallel. The same problem exists in biological vision systems, where the information, sensed by many millions of receptors should be transmitted and processed in real time. Models, describing the bottleneck problem solutions in biological systems fall in the field of visual attention. This paper presents the bottleneck problem existing in imagers used for real time salient target tracking and proposes a simple solution by employing models of attention, found in biological systems. The bottleneck problem in imaging systems is presented, the existing models of visual attention are discussed and the architecture of the proposed imager is shown.