7 resultados para threshold random variable

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A partition of a positive integer n is a way of writing it as the sum of positive integers without regard to order; the summands are called parts. The number of partitions of n, usually denoted by p(n), is determined asymptotically by the famous partition formula of Hardy and Ramanujan [5]. We shall introduce the uniform probability measure P on the set of all partitions of n assuming that the probability 1/p(n) is assigned to each n-partition. The symbols E and V ar will be further used to denote the expectation and variance with respect to the measure P . Thus, each conceivable numerical characteristic of the parts in a partition can be regarded as a random variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let (Xi ) be a sequence of i.i.d. random variables, and let N be a geometric random variable independent of (Xi ). Geometric stable distributions are weak limits of (normalized) geometric compounds, SN = X1 + · · · + XN , when the mean of N converges to infinity. By an appropriate representation of the individual summands in SN we obtain series representation of the limiting geometric stable distribution. In addition, we study the asymptotic behavior of the partial sum process SN (t) = ⅀( i=1 ... [N t] ) Xi , and derive series representations of the limiting geometric stable process and the corresponding stochastic integral. We also obtain strong invariance principles for stable and geometric stable laws.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider an uncertain version of the scheduling problem to sequence set of jobs J on a single machine with minimizing the weighted total flow time, provided that processing time of a job can take on any real value from the given closed interval. It is assumed that job processing time is unknown random variable before the actual occurrence of this time, where probability distribution of such a variable between the given lower and upper bounds is unknown before scheduling. We develop the dominance relations on a set of jobs J. The necessary and sufficient conditions for a job domination may be tested in polynomial time of the number n = |J| of jobs. If there is no a domination within some subset of set J, heuristic procedure to minimize the weighted total flow time is used for sequencing the jobs from such a subset. The computational experiments for randomly generated single-machine scheduling problems with n ≤ 700 show that the developed dominance relations are quite helpful in minimizing the weighted total flow time of n jobs with uncertain processing times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65C05

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].