11 resultados para statistical mechanics many-body inverse problem graph-theory
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30
Resumo:
MSC subject classification: 65C05, 65U05.
Resumo:
When Recurrent Neural Networks (RNN) are going to be used as Pattern Recognition systems, the problem to be considered is how to impose prescribed prototype vectors ξ^1,ξ^2,...,ξ^p as fixed points. The synaptic matrix W should be interpreted as a sort of sign correlation matrix of the prototypes, In the classical approach. The weak point in this approach, comes from the fact that it does not have the appropriate tools to deal efficiently with the correlation between the state vectors and the prototype vectors The capacity of the net is very poor because one can only know if one given vector is adequately correlated with the prototypes or not and we are not able to know what its exact correlation degree. The interest of our approach lies precisely in the fact that it provides these tools. In this paper, a geometrical vision of the dynamic of states is explained. A fixed point is viewed as a point in the Euclidean plane R2. The retrieving procedure is analyzed trough statistical frequency distribution of the prototypes. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented
Resumo:
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday
Resumo:
We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.
Resumo:
We survey counterexamples to Hilbert’s Fourteenth Problem, beginning with those of Nagata in the late 1950s, and including recent counterexamples in low dimension constructed with locally nilpotent derivations. Historical framework and pertinent references are provided. We also include 8 important open questions.
Resumo:
The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information and statistical distribution theory. The results presented in the essay cover a period of time in Mathai's research from 1982 to 2008 and are all related to the thematic area of the gravitationally stabilized solar fusion reactor and fractional reaction-diffusion, taking into account concepts of non-extensive statistical mechanics. The time period referred to above coincides also with Mathai's exceptional contributions to the establishment and operation of the Centre for Mathematical Sciences, India, as well as the holding of the United Nations (UN)/European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) of the United States/ Japanese Aerospace Exploration Agency (JAXA) Workshops on basic space science and the International Heliophysical Year 2007, around the world. Professor Mathai's contributions to the latter, since 1991, are a testimony for his social con-science applied to international scientific activity.
Resumo:
ACM Computing Classification System (1998): G.2.2.
Resumo:
AMS subject classification: 90B80.
Resumo:
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a \main theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.
Resumo:
As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in Lyapunov ́s second method, which states that associated to any one given net state, there always exist a real number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( x, y ) , associated to any one given state of the net. We will prove that when the net change its state, then the product x ⋅ y will decrease. All the states whose projection over the energy field are placed on the same hyperbolic surface, will be considered as points with the same energy level. On the other hand we will prove that if the states are classified attended to their distances to the zero vector, only one pattern in each one of the different classes may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that plane. The geometrical properties of the synaptic matrix W may be used for classifying the n-dimensional state- vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented.