1 resultado para sequential change detection
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (2)
- Aston University Research Archive (8)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (28)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (12)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (12)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Indian Institute of Science - Bangalore - Índia (45)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (8)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (25)
- Queensland University of Technology - ePrints Archive (613)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (8)
- University of Michigan (3)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (1)
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.