13 resultados para semiautomatic knowledge acquisition
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
An approach for knowledge extraction from the information arriving to the knowledge base input and also new knowledge distribution over knowledge subsets already present in the knowledge base is developed. It is also necessary to realize the knowledge transform into parameters (data) of the model for the following decision-making on the given subset. It is assumed to realize the decision-making with the fuzzy sets’ apparatus.
Resumo:
A decision support system SonaRes destined to guide and help the ultrasound operators is proposed and compared with the existing ones. The system is based on rules and images and can be used as a second opinion in the process of ultrasound examination.
Resumo:
This paper considers the problem of concept generalization in decision-making systems where such features of real-world databases as large size, incompleteness and inconsistence of the stored information are taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to processing of real value attributes in large data tables. Also the search algorithm of the significant attributes combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of insignificant attributes into intervals.
Resumo:
* The work is partially suported by Russian Foundation for Basic Studies (grant 02-01-00466).
Resumo:
Civilization has brought us into the noosphere world. Besides physical, around (and inside of) us exist and function also mental and cultural entities. It is impossible to perform now knowledge acquisition, knowledge base creation and organizational systems management without adequate consideration of object’s noosphere statuses. I tried here to clarify basic viewpoints concerning this issue, hoping that elaboration of common methodological foundations of semiotic modeling will be useful for developers and also for users of new generation automation systems.
Resumo:
The paper develops a set of ideas and techniques supporting analogical reasoning throughout the life-cycle of terrorist acts. Implementation of these ideas and techniques can enhance the intellectual level of computer-based systems for a wide range of personnel dealing with various aspects of the problem of terrorism and its effects. The method combines techniques of structure-sensitive distributed representations in the framework of Associative-Projective Neural Networks, and knowledge obtained through the progress in analogical reasoning, in particular the Structure Mapping Theory. The impact of these analogical reasoning tools on the efforts to minimize the effects of terrorist acts on civilian population is expected by facilitating knowledge acquisition and formation of terrorism-related knowledge bases, as well as supporting the processes of analysis, decision making, and reasoning with those knowledge bases for users at various levels of expertise before, during, and after terrorist acts.
Resumo:
Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.
Resumo:
Many organic compounds cause an irreversible damage to human health and the ecosystem and are present in water resources. Among these hazard substances, phenolic compounds play an important role on the actual contamination. Utilization of membrane technology is increasing exponentially in drinking water production and waste water treatment. The removal of organic compounds by nanofiltration membranes is characterized not only by molecular sieving effects but also by membrane-solute interactions. Influence of the sieving parameters (molecular weight and molecular diameter) and the physicochemical interactions (dissociation constant and molecular hydrophobicity) on the membrane rejection of the organic solutes were studied. The molecular hydrophobicity is expressed as logarithm of octanol-water partition coefficient. This paper proposes a method used that can be used for symbolic knowledge extraction from a trained neural network, once they have been trained with the desired performance and is based on detect the more important variables in problems where exist multicolineality among the input variables.
Resumo:
* The work was supported by the RFBR under Grants N07-01-00331a, 08-07-00136a
Resumo:
Kiril Ivanov - Four criteria for estimating the degree of fundamental programming knowledge acquisition are formulated. The specificity of the proof-oriented thinking in object- oriented programming and its role in the learning of fundamentals are pointed. Two ways of reasoning are distinguished: with an only possible conclusion and with a multiple choice by search of balance between contradictory requirements. Examples of arguments that help considerably the students to understand the basic ideas related to the use of objects and classes in different stages of the software system development are given. Particular attention is paid to the influence of the proof-oriented thinking on the learners’ motivation and hence – on their fundamental knowledge acquisition.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
In this work we suggest the technology of creation of intelligent tutoring systems which are oriented to teach knowledge. It is supposed the acquisition of expert’s knowledge by using of the Formal Concept Analysis method, then construction the test questions which are used for verification of the pupil's knowledge with the expert’s knowledge. Then the further tutoring strategy is generated by the results of this verification.
Resumo:
Within the framework of heritage preservation, 3D scanning and modeling for heritage documentation has increased significantly in recent years, mainly due to the evolution of laser and image-based techniques, modeling software, powerful computers and virtual reality. 3D laser acquisition constitutes a real development opportunity for 3D modeling based previously on theoretical data. The representation of the object information rely on the knowledge of its historic and theoretical frame to reconstitute a posteriori its previous states. This project proposes an approach dealing with data extraction based on architectural knowledge and Laser statement informing measurements, the whole leading to 3D reconstruction. The experimented Khmer objects are exposed at Guimet museum in Paris. The purpose of this digital modeling meets the need of exploitable models for simulation projects, prototyping, exhibitions, promoting cultural tourism and particularly for archiving against any likely disaster and as an aided tool for the formulation of virtual museum concept.