6 resultados para semi-empirical methods

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some basic points from the automated creation of a Bulgarian WordNet – an analogue of the Princeton WordNet, are treated. The used computer tools, the received results and their estimation are discussed. A side effect from the proposed approach is the receiving of patterns for the Bulgarian syntactic analyzer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AMS Subj. Classification: 49J15, 49M15

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.