11 resultados para science learning
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.
Resumo:
E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.
Resumo:
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshko ff and Lubomir Tschakaloff , Sofi a, July, 2006.
Resumo:
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
Resumo:
* The work is partially suported by Russian Foundation for Basic Studies (grant 02-01-00466).
Resumo:
* This research was partially supported by the Latvian Science Foundation under grant No.02-86d.
Resumo:
ACM Computing Classification System (1998): K.3.1, K.3.2.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
The purpose of this article is to evaluate the effectiveness of learning by doing as a practical tool for managing the training of students in "Library Management" at the ULSIT, Sofia, Bulgaria, by using the creation of project 'Data Base “Bulgarian Revival Towns” (CD), financed by Bulgarian Ministry of Education, Youth and Science (1/D002/144/13.10.2011) headed by Prof. DSc Ivanka Yankova, which aims to create new information resource for the towns which will serve the needs of scientific researches. By participating in generating the an array in the database through searching, selection and digitization of documents from these period, at the same time students get an opportunity to expand their skills to work effectively in a team, finding the interdisciplinary, a causal connection between the studied items, objects and subjects and foremost – practical experience in the field of digitization, information behavior, strategies for information search, etc. This method achieves good results for the accumulation of sustainable knowledge and it generates motivation to work in the field of library and information professions.
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016