5 resultados para role-based access control
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The paper is related with the problem of developing autonomous intelligent robots for complex environments. In details it outlines a knowledge-based robot control architecture that combines several techniques in order to supply an ability to adapt and act autonomously in complex environments. The described architecture has been implemented as a robotic system that demonstrates its operation in dynamic environment. Although the robotic system demonstrates a certain level of autonomy, the experiments show that there are situation, in which the developed base architecture should be complemented with additional modules. The last few chapters of the paper describe the experimentation results and the current state of further research towards the developed architecture.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
All information systems have to be protected. As the number of information objects and the number of users increase the task of information system’s protection becomes more difficult. One of the most difficult problems is access rights assignment. This paper describes the graph model of access rights inheritance. This model takes into account relations and dependences between different objects and between different users. The model can be implemented in the information systems controlled by the metadata, describing information objects and connections between them, such as the systems based on CASE-technology METAS.
Resumo:
The article describes researches of a method of person recognition by face image based on Gabor wavelets. Scales of Gabor functions are determined at which the maximal percent of recognition for search of a person in a database and minimal percent of mistakes due to false alarm errors when solving an access control task is achieved. The carried out researches have shown a possibility of improvement of recognition system work parameters in the specified two modes when the volume of used data is reduced.
Resumo:
Membrane systems are computational equivalent to Turing machines. However, its distributed and massively parallel nature obtain polynomial solutions opposite to traditional non-polynomial ones. Nowadays, developed investigation for implementing membrane systems has not yet reached the massively parallel character of this computational model. Better published approaches have achieved a distributed architecture denominated “partially parallel evolution with partially parallel communication” where several membranes are allocated at each processor, proxys are used to communicate with membranes allocated at different processors and a policy of access control to the communications is mandatory. With these approaches, it is obtained processors parallelism in the application of evolution rules and in the internal communication among membranes allocated inside each processor. Even though, external communications share a common communication line, needed for the communication among membranes arranged in different processors, are sequential. In this work, we present a new hierarchical architecture that reaches external communication parallelism among processors and substantially increases parallelization in the application of evolution rules and internal communications. Consequently, necessary time for each evolution step is reduced. With all of that, this new distributed hierarchical architecture is near to the massively parallel character required by the model.