2 resultados para quantum computing, molecular electronics, lab-on-a-chip

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To the two classical reversible 1-bit logic gates, i.e. the identity gate (a.k.a. the follower) and the NOT gate (a.k.a. the inverter), we add an extra gate, the square root of NOT. Similarly, we add to the 24 classical reversible 2-bit circuits, both the square root of NOT and the controlled square root of NOT. This leads to a new kind of calculus, situated between classical reversible computing and quantum computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane computing is a recent area that belongs to natural computing. This field works on computational models based on nature's behavior to process the information. Recently, numerous models have been developed and implemented with this purpose. P-systems are the structures which have been defined, developed and implemented to simulate the behavior and the evolution of membrane systems which we find in nature. What we show in this paper is an application capable to simulate the P-systems based on a multiagent systems (MAS) technology. The main goal we want to achieve is to take advantage of the inner qualities of the multiagent systems. This way we can analyse the proper functioning of any given p-system. When we observe a P-system from a different perspective, we can be assured that it is a particular case of the multiagent systems. This opens a new possibility, in the future, to always evaluate the P-systems in terms of the multiagent systems technology.