9 resultados para principal sparse non-negative matrix factorization

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 47A60, 47D06.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 20M20, 20M10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 68Q22, 90C90

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of real numbers. We focus on certain operations of errors which seem not to have been sufficiently studied algebraically. In this work we restrict ourselves to arithmetic operations for errors related to addition and multiplication by scalars. We pay special attention to subtractability-like properties of errors and the induced “distance-like” operation. This operation is implicitly used under different names in several contemporary fields of applied mathematics (inner subtraction and inner addition in interval analysis, generalized Hukuhara difference in fuzzy set theory, etc.) Here we present some new results related to algebraic properties of this operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 81Q60, 35Q40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 39A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 05C50.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.