2 resultados para phylodiversity dependence
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this article on quasidifferential equation with non-fixed time of impulses we consider the continuous dependence of the solutions on the initial conditions as well as the mappings defined by these equations. We prove general theorems for quasidifferential equations from which follows corresponding results for differential equations, differential inclusion and equations with Hukuhara derivative.
Resumo:
Dependence in the world of uncertainty is a complex concept. However, it exists, is asymmetric, has magnitude and direction, and can be measured. We use some measures of dependence between random events to illustrate how to apply it in the study of dependence between non-numeric bivariate variables and numeric random variables. Graphics show what is the inner dependence structure in the Clayton Archimedean copula and the Bivariate Poisson distribution. We know this approach is valid for studying the local dependence structure for any pair of random variables determined by its empirical or theoretical distribution. And it can be used also to simulate dependent events and dependent r/v/’s, but some restrictions apply. ACM Computing Classification System (1998): G.3, J.2.