14 resultados para periodic orbits

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 37D40.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signal processing is an important topic in technological research today. In the areas of nonlinear dynamics search, the endeavor to control or order chaos is an issue that has received increasing attention over the last few years. Increasing interest in neural networks composed of simple processing elements (neurons) has led to widespread use of such networks to control dynamic systems learning. This paper presents backpropagation-based neural network architecture that can be used as a controller to stabilize unsteady periodic orbits. It also presents a neural network-based method for transferring the dynamics among attractors, leading to more efficient system control. The procedure can be applied to every point of the basin, no matter how far away from the attractor they are. Finally, this paper shows how two mixed chaotic signals can be controlled using a backpropagation neural network as a filter to separate and control both signals at the same time. The neural network provides more effective control, overcoming the problems that arise with control feedback methods. Control is more effective because it can be applied to the system at any point, even if it is moving away from the target state, which prevents waiting times. Also control can be applied even if there is little information about the system and remains stable longer even in the presence of random dynamic noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a spectral criterion for existence of mean-periodic solutions of retarded functional differential equations with a time-independent main part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method (algorithm BIDIMS) of multivariate objects display to bidimensional structure in which the sum of differences of objects properties and their nearest neighbors is minimal is being described. The basic regularities on the set of objects at this ordering become evident. Besides, such structures (tables) have high inductive opportunities: many latent properties of objects may be predicted on their coordinates in this table. Opportunities of a method are illustrated on an example of bidimentional ordering of chemical elements. The table received in result practically coincides with the periodic Mendeleev table.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The result of the distributed computing projectWieferich@Home is presented: the binary periodic numbers of bit pseudo-length j ≤ 3500 obtained by replication of a bit string of bit pseudo-length k ≤ 24 and increased by one are Wieferich primes only for the cases of 1092 or 3510.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.