6 resultados para parallel implementation
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.
Resumo:
MSC subject classification: 65C05, 65U05.
Resumo:
In the field of Transition P systems implementation, it has been determined that it is very important to determine in advance how long takes evolution rules application in membranes. Moreover, to have time estimations of rules application in membranes makes possible to take important decisions related to hardware / software architectures design. The work presented here introduces an algorithm for applying active evolution rules in Transition P systems, which is based on active rules elimination. The algorithm complies the requisites of being nondeterministic, massively parallel, and what is more important, it is time delimited because it is only dependant on the number of membrane evolution rules.
Resumo:
This paper is focused on a parallel JAVA implementation of a processor defined in a Network of Evolutionary Processors. Processor description is based on JDom, which provides a complete, Java-based solution for accessing, manipulating, and outputting XML data from Java code. Communication among different processor to obtain a fully functional simulation of a Network of Evolutionary Processors will be treated in future. A safe-thread model of processors performs all parallel operations such as rules and filters. A non-deterministic behavior of processors is achieved with a thread for each rule and for each filter (input and output). Different results of a processor evolution are shown.
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
ACM Computing Classification System (1998): D.2.11, D.1.3, D.3.1, J.3, C.2.4.