6 resultados para object analysis
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Original method and technology of systemological «Unit-Function-Object» analysis for solving complete ill-structured problems is proposed. The given visual grapho-analytical UFO technology for the fist time combines capabilities and advantages of the system and object approaches and can be used for business reengineering and for information systems design. UFO- technology procedures are formalized by pattern-theory methods and developed by embedding systemological conceptual classification models into the system-object analysis and software tools. Technology is based on natural classification and helps to investigate deep semantic regularities of subject domain and to take proper account of system-classes essential properties the most objectively. Systemological knowledge models are based on method which for the first time synthesizes system and classification analysis. It allows creating CASE-toolkit of a new generation for organizational modelling for companies’ sustainable development and competitive advantages providing.
Resumo:
In this paper a methodology for evaluation of information security of objects under attacks, processed by methods of compression, is represented. Two basic parameters for evaluation of information security of objects – TIME and SIZE – are chosen and the characteristics, which reflect on their evaluation, are analyzed and estimated. A co-efficient of information security of object is proposed as a mean of the coefficients of the parameter TIME and SIZE. From the simulation experiments which were carried out methods with the highest co-efficient of information security had been determined. Assessments and conclusions for future investigations are proposed.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
Recognition of the object contours in the image as sequences of digital straight segments and/or digital curve arcs is considered in this article. The definitions of digital straight segments and of digital curve arcs are proposed. The methods and programs to recognize the object contours are represented. The algorithm to recognize the digital straight segments is formulated in terms of the growing pyramidal networks taking into account the conceptual model of memory and identification (Rabinovich [4]).
Resumo:
A new original method and CASE-tool of system analysis and modelling are represented. They are for the first time consistent with the requirements of object-oriented technology of informational systems design. They essentially facilitate the construction of organisational systems models and increase the quality of the organisational designing and basic technological processes of object application developing.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.