8 resultados para norms

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p = 1, we have no answer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that a representable non-separable Banach space does not admit uniformly Gâteaux-smooth norms. This is true in particular for C(K) spaces where K is a separable non-metrizable Rosenthal compact space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, unified presentation of the ideal norms of factorization of operators through Banach lattices and related ideal norms is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deviations of some entire functions of exponential type from real-valued functions and their derivatives are estimated. As approximation metrics we use the Lp-norms and power variations on R. Theorems presented here correspond to the Ganelius and Popov results concerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]). Some related facts were announced in [2, 3, 6 and 7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.