33 resultados para multi-class classification
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Resource discovery is one of the key services in digitised cultural heritage collections. It requires intelligent mining in heterogeneous digital content as well as capabilities in large scale performance; this explains the recent advances in classification methods. Associative classifiers are convenient data mining tools used in the field of cultural heritage, by applying their possibilities to taking into account the specific combinations of the attribute values. Usually, the associative classifiers prioritize the support over the confidence. The proposed classifier PGN questions this common approach and focuses on confidence first by retaining only 100% confidence rules. The classification tasks in the field of cultural heritage usually deal with data sets with many class labels. This variety is caused by the richness of accumulated culture during the centuries. Comparisons of classifier PGN with other classifiers, such as OneR, JRip and J48, show the competitiveness of PGN in recognizing multi-class datasets on collections of masterpieces from different West and East European Fine Art authors and movements.
Resumo:
2010 Mathematics Subject Classification: Primary 35S05; Secondary 35A17.
Resumo:
2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Contract No MM 1405. Part of the results were announced at the Fifth International Workshop on Optimal Codes and Related Topics (OCRT), White Lagoon, June 2007, Bulgaria
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
Decision making and technical decision analysis demand computer-aided techniques and therefore more and more support by formal techniques. In recent years fuzzy decision analysis and related techniques gained importance as an efficient method for planning and optimization applications in fields like production planning, financial and economical modeling and forecasting or classification. It is also known, that the hierarchical modeling of the situation is one of the most popular modeling method. It is shown, how to use the fuzzy hierarchical model in complex with other methods of Multiple Criteria Decision Making. We propose a novel approach to overcome the inherent limitations of Hierarchical Methods by exploiting multiple criteria decision making.
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
his article presents some of the results of the Ph.D. thesis Class Association Rule Mining Using MultiDimensional Numbered Information Spaces by Iliya Mitov (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt University, Faculty of Science on 15 November 2011 in Belgium
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12
Resumo:
2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30
Resumo:
2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.