12 resultados para modulus of rupture

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 42A32; 42A20

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A05.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AMS subject classification: 49K40, 90C31.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 41A25, 41A35

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A25, 41A17, 26D10. ∗Part of the results were reported at the Conference “Pioneers of Bulgarian Mathematics”, Sofia, 2006.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A10, 41A25, 41A27, 41A35, 41A36, 42A10.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 41A10, 41A15, 41A25, 41A36