5 resultados para minimal Hausdorff space
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.
Resumo:
This work has been partially supported by Grant No. DO 02-275, 16.12.2008, Bulgarian NSF, Ministry of Education and Science.
Resumo:
*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003
Resumo:
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.
Resumo:
Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n. Получени са също така някои следствия.