2 resultados para l-Sequences

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal grammars can used for describing complex repeatable structures such as DNA sequences. In this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant development, and model the morphology of a variety of organisms. We believe that parallel grammars also can be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, but there are many exceptions which makes the promoter recognition a complex problem. We replace the problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L- grammar rules are analyzed and compared with natural promoter sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.