15 resultados para k-Lipschitz aggregation functions

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an alternative characterization of the class of functions called k -uniformly convex is found. Various relations concerning connections with other classes of univalent functions are given. Moreover a new class of univalent functions, analogous to the ’Mocanu class’ of functions, is introduced. Some results concerning this class are derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information extraction or knowledge discovery from large data sets should be linked to data aggregation process. Data aggregation process can result in a new data representation with decreased number of objects of a given set. A deterministic approach to separable data aggregation means a lesser number of objects without mixing of objects from different categories. A statistical approach is less restrictive and allows for almost separable data aggregation with a low level of mixing of objects from different categories. Layers of formal neurons can be designed for the purpose of data aggregation both in the case of deterministic and statistical approach. The proposed designing method is based on minimization of the of the convex and piecewise linear (CPL) criterion functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Partially supported by Grant MM-428/94 of MESC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C25, 30C45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C25, 30C45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C45

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.