7 resultados para k-Error linear complexity

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results indicate that whereas F LQ runs on average faster (or quite faster) than LM Q, nonetheless the quality of the bounds computed by both is about the same; moreover, it was revealed that when VAS-CF is run on our benchmark polynomials using F LQ, LM Q and min(F LQ, LM Q) all three versions run equally well and, hence, it is inconclusive which one should be used in the VAS-CF method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 41A25, 41A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Self-shrinking p-adic cryptographic generator (SSPCG) is a fast software stream cipher. Improved cryptoanalysis of the SSPCG is introduced. This cryptoanalysis makes more precise the length of the period of the generator. The linear complexity and the cryptography resistance against most recently used attacks are invesigated. Then we discuss how such attacks can be avoided. The results show that the sequence generated by a SSPCG has a large period, large linear complexity and is stable against the cryptographic attacks. This gives the reason to consider the SSPSG as suitable for critical cryptographic applications in stream cipher encryption algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sufficient conditions for the existence of Lp(k)-solutions of linear nonhomogeneous impulsive differential equations with unbounded linear operator are found. An example of the theory of the linear nonhomogeneous partial impulsive differential equations of parabolic type is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A10, 41A25, 41A27, 41A35, 41A36, 42A10.