8 resultados para isotropic hyperfine splitting constant

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26D10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Марта Теофилова - Конструиран е пример на четиримерно специално комплексно многообразие с норденова метрика и постоянна холоморфна секционна кривина чрез двупара-метрично семейство от разрешими алгебри на Ли. Изследвани са кривинните свойства на полученото многообразие. Дадени са необходими и достатъчни усло-вия за разглежданото многообразие да бъде изотропно келерово.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Variable neighbourhood search (VNS) approach for solving the Maximum Set Splitting Problem (MSSP). The algorithm forms a system of neighborhoods based on changing the component for an increasing number of elements. An efficient local search procedure swaps the components of pairs of elements and yields a relatively short running time. Numerical experiments are performed on the instances known in the literature: minimum hitting set and Steiner triple systems. Computational results show that the proposed VNS achieves all optimal or best known solutions in short times. The experiments indicate that the VNS compares favorably with other methods previously used for solving the MSSP. ACM Computing Classification System (1998): I.2.8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 37K40, 35Q15, 35Q51, 37K15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.1, G.1.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 53B35, Secondary 53C50.