5 resultados para innovation and technologic diffusion

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65M06, 65M12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information and statistical distribution theory. The results presented in the essay cover a period of time in Mathai's research from 1982 to 2008 and are all related to the thematic area of the gravitationally stabilized solar fusion reactor and fractional reaction-diffusion, taking into account concepts of non-extensive statistical mechanics. The time period referred to above coincides also with Mathai's exceptional contributions to the establishment and operation of the Centre for Mathematical Sciences, India, as well as the holding of the United Nations (UN)/European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) of the United States/ Japanese Aerospace Exploration Agency (JAXA) Workshops on basic space science and the International Heliophysical Year 2007, around the world. Professor Mathai's contributions to the latter, since 1991, are a testimony for his social con-science applied to international scientific activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While openness is well applied to software development and exploitation (open sources), and successfully applied to new business models (open innovation), fundamental and applied research seems to lag behind. Even after decades of advocacy, in 2011 only 50% of the public-funded research was freely available and accessible (Archambault et al., 2013). The current research workflows, stemming from a pre-internet age, result in loss of opportunity not only for the researchers themselves (cf. extensive literature on topic at Open Access citation project, http://opcit.eprints.org/), but also slows down innovation and application of research results (Houghton & Swan, 2011). Recent studies continue to suggest that lack of awareness among researchers, rather than lack of e-infrastructure and methodology, is a key reason for this loss of opportunity (Graziotin 2014). The session will focus on why Open Science is ideally suited to achieving tenure-relevant researcher impact in a “Publish or Perish” reality. Open Science encapsulates tools and approaches for each step along the research cycle: from Open Notebook Science to Open Data, Open Access, all setting up researchers for capitalising on social media in order to promote and discuss, and establish unexpected collaborations. Incorporating these new approaches into a updated personal research workflow is of strategic beneficial for young researchers, and will prepare them for expected long term funder trends towards greater openness and demand for greater return on investment (ROI) for public funds.