6 resultados para information flow
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The article proposes the model of management of information about program flow analysis for conducting computer experiments with program transformations. It considers the architecture and context of the flow analysis subsystem within the framework of Specialized Knowledge Bank on Program Transformations and describes the language for presenting flow analysis methods in the knowledge bank.
Resumo:
Non-preemptive two-machine flow-shop scheduling problem with uncertain processing times of n jobs is studied. In an uncertain version of a scheduling problem, there may not exist a unique schedule that remains optimal for all possible realizations of the job processing times. We find necessary and sufficient conditions (Theorem 1) when there exists a dominant permutation that is optimal for all possible realizations of the job processing times. Our computational studies show the percentage of the problems solvable under these conditions for the cases of randomly generated instances with n ≤ 100 . We also show how to use additional information about the processing times of the completed jobs during optimal realization of a schedule (Theorems 2 – 4). Computational studies for randomly generated instances with n ≤ 50 show the percentage of the two- machine flow-shop scheduling problems solvable under the sufficient conditions given in Theorems 2 – 4.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
We consider an uncertain version of the scheduling problem to sequence set of jobs J on a single machine with minimizing the weighted total flow time, provided that processing time of a job can take on any real value from the given closed interval. It is assumed that job processing time is unknown random variable before the actual occurrence of this time, where probability distribution of such a variable between the given lower and upper bounds is unknown before scheduling. We develop the dominance relations on a set of jobs J. The necessary and sufficient conditions for a job domination may be tested in polynomial time of the number n = |J| of jobs. If there is no a domination within some subset of set J, heuristic procedure to minimize the weighted total flow time is used for sequencing the jobs from such a subset. The computational experiments for randomly generated single-machine scheduling problems with n ≤ 700 show that the developed dominance relations are quite helpful in minimizing the weighted total flow time of n jobs with uncertain processing times.
Resumo:
The advances in building learning technology now have to emphasize on the aspect of the individual learning besides the popular focus on the technology per se. Unlike the common research where a great deal has been on finding ways to build, manage, classify, categorize and search knowledge on the server, there is an interest in our work to look at the knowledge development at the individual’s learning. We build the technology that resides behind the knowledge sharing platform where learning and sharing activities of an individual take place. The system that we built, KFTGA (Knowledge Flow Tracer and Growth Analyzer), demonstrates the capability of identifying the topics and subjects that an individual is engaged with during the knowledge sharing session and measuring the knowledge growth of the individual learning on a specific subject on a given time space.