8 resultados para genetic regulatory network, stochastic modeling, stochastic simulation, noise

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With this paper we would like to trigger a discussion on future needs of modeling and simulation techniques and tools for the telecommunication industry. We claim that the telecommunication market has undergone severe changes that affect the need for and type of simulations in industrial research. We suggest some approaches how to address these new challenges. We believe that there is need for intensive research in the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For metal and metal halide vapor lasers excited by high frequency pulsed discharge, the thermal effect mainly caused by the radial temperature distribution is of considerable importance for stable laser operation and improvement of laser output characteristics. A short survey of the obtained analytical and numerical-analytical mathematical models of the temperature profile in a high-powered He-SrBr2 laser is presented. The models are described by the steady-state heat conduction equation with mixed type nonlinear boundary conditions for the arbitrary form of the volume power density. A complete model of radial heat flow between the two tubes is established for precise calculating the inner wall temperature. The models are applied for simulating temperature profiles for newly designed laser. The author’s software prototype LasSim is used for carrying out the mathematical models and simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing approaches to quality estimation of e-learning systems are analyzed. The “layered” approach for quality estimation of e-learning systems enhanced with learning process modeling and simulation is presented. The method of quality estimation using learning process modeling and quality criteria are suggested. The learning process model based on extended colored stochastic Petri net is described. The method has been implemented in the automated system of quality estimation of e-learning systems named “QuAdS”. Results of approbation of the developed method and quality criteria are shown. We argue that using learning process modeling for quality estimation simplifies identifying lacks of an e-learning system for an expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are performed in support of our modelling approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formal grammars can used for describing complex repeatable structures such as DNA sequences. In this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant development, and model the morphology of a variety of organisms. We believe that parallel grammars also can be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, but there are many exceptions which makes the promoter recognition a complex problem. We replace the problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L- grammar rules are analyzed and compared with natural promoter sequences.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are considered. General algorithm scheme and specific combinatorial optimization method, using “golden section” rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current combinatorial optimization techniques is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M10.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60H15, 60H40