9 resultados para generalized linear-models

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In non-linear random effects some attention has been very recently devoted to the analysis ofsuitable transformation of the response variables separately (Taylor 1996) or not (Oberg and Davidian 2000) from the transformations of the covariates and, as far as we know, no investigation has been carried out on the choice of link function in such models. In our study we consider the use of a random effect model when a parameterized family of links (Aranda-Ordaz 1981, Prentice 1996, Pregibon 1980, Stukel 1988 and Czado 1997) is introduced. We point out the advantages and the drawbacks associated with the choice of this data-driven kind of modeling. Difficulties in the interpretation of regression parameters, and therefore in understanding the influence of covariates, as well as problems related to loss of efficiency of estimates and overfitting, are discussed. A case study on radiotherapy usage in breast cancer treatment is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Магдалина Василева Тодорова - В статията е описан подход за верификация на процедурни програми чрез изграждане на техни модели, дефинирани чрез обобщени мрежи. Подходът интегрира концепцията “design by contract” с подходи за верификация от тип доказателство на теореми и проверка на съгласуваност на модели. За целта разделно се верифицират функциите, които изграждат програмата относно спецификации според предназначението им. Изгражда се обобщен мрежов модел, специфициащ връзките между функциите във вид на коректни редици от извиквания. За главната функция на програмата се построява обобщен мрежов модел и се проверява дали той съответства на мрежовия модел на връзките между функциите на програмата. Всяка от функциите на програмата, която използва други функции се верифицира и относно спецификацията, зададена чрез мрежовия модел на връзките между функциите на програмата.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62P10, 62J12.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62H12, 62P99

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of risk measures associated with price series data movements and its predictions are of strategic importance in the financial markets as well as to policy makers in particular for short- and longterm planning for setting up economic growth targets. For example, oilprice risk-management focuses primarily on when and how an organization can best prevent the costly exposure to price risk. Value-at-Risk (VaR) is the commonly practised instrument to measure risk and is evaluated by analysing the negative/positive tail of the probability distributions of the returns (profit or loss). In modelling applications, least-squares estimation (LSE)-based linear regression models are often employed for modeling and analyzing correlated data. These linear models are optimal and perform relatively well under conditions such as errors following normal or approximately normal distributions, being free of large size outliers and satisfying the Gauss-Markov assumptions. However, often in practical situations, the LSE-based linear regression models fail to provide optimal results, for instance, in non-Gaussian situations especially when the errors follow distributions with fat tails and error terms possess a finite variance. This is the situation in case of risk analysis which involves analyzing tail distributions. Thus, applications of the LSE-based regression models may be questioned for appropriateness and may have limited applicability. We have carried out the risk analysis of Iranian crude oil price data based on the Lp-norm regression models and have noted that the LSE-based models do not always perform the best. We discuss results from the L1, L2 and L∞-norm based linear regression models. ACM Computing Classification System (1998): B.1.2, F.1.3, F.2.3, G.3, J.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We build the Conditional Least Squares Estimator of 0 based on the observation of a single trajectory of {Zk,Ck}k, and give conditions ensuring its strong consistency. The particular case of general linear models according to 0=( 0, 0) and among them, regenerative processes, are studied more particularly. In this frame, we may also prove the consistency of the estimator of 0 although it belongs to an asymptotic negligible part of the model, and the asymptotic law of the estimator may also be calculated.