14 resultados para fuzzy linear system
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 62H15, 62P10.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.
Resumo:
This work reports on a new software for solving linear systems involving affine-linear dependencies between complex-valued interval parameters. We discuss the implementation of a parametric residual iteration for linear interval systems by advanced communication between the system Mathematica and the library C-XSC supporting rigorous complex interval arithmetic. An example of AC electrical circuit illustrates the use of the presented software.
Resumo:
MSC 2010: 26A33, 44A45, 44A40, 65J10
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.
Resumo:
Research partially supported by INTAS grant 97-1644
Resumo:
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35
Resumo:
The author analyzes some peculiarities of information perception and the problems of tests evaluation. A fuzzy model of tests evaluation as means of increasing the effectiveness of knowledge control is suggested.
Resumo:
The problems of formalization of the process of matching different management subjects’ functioning characteristics obtained on the financial flows analysis basis is considered. Formal generalizations for gaining economical security system knowledge bases elements are presented. One of feedback directions establishment between knowledge base of the system of economical security and financial flows database analysis is substantiated.
Resumo:
The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.