4 resultados para freak waves
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
A strictly hyperbolic quasi-linear 2×2 system in two independent variables with C2 coefficients is considered. The existence of a simple wave solution in the sense that the solution is a 2-dimensional vector-valued function of the so called Riemann invariant is discussed. It is shown, through a purely geometrical approach, that there always exists simple wave solution for the general system when the coefficients are arbitrary C^2 functions depending on both, dependent and independent variables.
Resumo:
This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation, conservation laws equations and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, we propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks), existence and uniqueness results, etc. The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding -shocks are also considered. As it concerns numerical methods we apply the CNN approach. The book is addressed to a broader audience including graduate students, Ph.D. students, mathematicians, physicist, engineers and specialists in the domain of PDE.
Resumo:
2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.