9 resultados para finite-time stability

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

∗The author was partially supported by Alexander von Humboldt Foundation and the Contract MM-516 with the Bulgarian Ministry of Education, Science and Thechnology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60H30, 35K55, 35K57, 35B35.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 34A08, 34A37, 49N70

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This research was supported by a grant from the Greek Ministry of Industry and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n} within the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation i ∈V is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly line the values ti are definitely fixed only for the subset of automated operations V\V . Another subset V ⊆ V includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of the assembly line. If j ∈V , then operation times tj can differ for different cycles of the production process. For the optimal line balance b of the assembly line with operation times t1, t2, ..., tn, we investigate stability of its optimality with respect to possible variations of the processing times tj of the manual operations j ∈ V .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: 49N35,49N55,65Lxx.