1 resultado para exact results
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n} within the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation i ∈V is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly line the values ti are definitely fixed only for the subset of automated operations V\V . Another subset V ⊆ V includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of the assembly line. If j ∈V , then operation times tj can differ for different cycles of the production process. For the optimal line balance b of the assembly line with operation times t1, t2, ..., tn, we investigate stability of its optimality with respect to possible variations of the processing times tj of the manual operations j ∈ V .