8 resultados para diagnostica energetica, diagnostica strutturale, prove non distruttive, edifici storici
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.
Resumo:
In this article on quasidifferential equation with non-fixed time of impulses we consider the continuous dependence of the solutions on the initial conditions as well as the mappings defined by these equations. We prove general theorems for quasidifferential equations from which follows corresponding results for differential equations, differential inclusion and equations with Hukuhara derivative.
Resumo:
We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.
Resumo:
Mathematics Subject Classification: Primary 47A60, 47D06.
Resumo:
Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.
Resumo:
In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.
Resumo:
2000 Mathematics Subject Classification: 35L15, Secondary 35L30.
Resumo:
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.