18 resultados para decision support system
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
A decision support system SonaRes destined to guide and help the ultrasound operators is proposed and compared with the existing ones. The system is based on rules and images and can be used as a second opinion in the process of ultrasound examination.
Resumo:
The paper presents a multicriteria decision support system, called MultiDecision-2, which consists of two independent parts - MKA-2 subsystem and MKO-2 subsystem. MultiDecision-2 software system supports the decision makers (DMs) in the solving process of different problems of multicriteria analysis and linear (continues and integer) problems of multicriteria optimization. The two subsystems MKA-2 and MKO-2 of of MultiDecision-2 are briefly described in the paper in the terms of the class of the problems being solved, the system structure, the operation with the interface modules for input data entry and the information about DM’s local preferences, as well as the operation with the interface modules for visualization of the current and final solutions.
Resumo:
* This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision Making."
Resumo:
This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).
Resumo:
The question of forming aim-oriented description of an object domain of decision support process is outlined. Two main problems of an estimation and evaluation of data and knowledge uncertainty in decision support systems – straight and reverse, are formulated. Three conditions being the formalized criteria of aimoriented constructing of input, internal and output spaces of some decision support system are proposed. Definitions of appeared and hidden data uncertainties on some measuring scale are given.
Resumo:
An approach of building distributed decision support systems is proposed. There is defined a framework of a distributed DSS and examined questions of problem formulation and solving using artificial intellectual agents in system core.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
This paper aims at development of procedures and algorithms for application of artificial intelligence tools to acquire process and analyze various types of knowledge. The proposed environment integrates techniques of knowledge and decision process modeling such as neural networks and fuzzy logic-based reasoning methods. The problem of an identification of complex processes with the use of neuro-fuzzy systems is solved. The proposed classifier has been successfully applied for building one decision support systems for solving managerial problem.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
Constant increase of human population result in more and more people living in emergency dangerous regions. In order to protect them from possible emergencies we need effective solution for decision taking in case of emergencies, because lack of time for taking decision and possible lack of data. One among possible methods of taking such decisions is shown in this article.
Resumo:
The paper describes a learning-oriented interactive method for solving linear mixed integer problems of multicriteria optimization. The method increases the possibilities of the decision maker (DM) to describe his/her local preferences and at the same time it overcomes some computational difficulties, especially in problems of large dimension. The method is realized in an experimental decision support system for finding the solution of linear mixed integer multicriteria optimization problems.
Resumo:
Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.
Resumo:
The description of the support system for marking decision in terms of prognosing the inflation level based on the multifactor dependence represented by the decision – marking “tree” is given in the paper. The interrelation of factors affecting the inflation level – economic, financial, political, socio-demographic ones, is considered. The perspectives for developing the method of decision – marking “tree”, and pointing out the so- called “narrow” spaces and further analysis of possible scenarios for inflation level prognosing in particular, are defined.
Resumo:
The reasons of a restricted applicability of the models of decision making in social and economic systems. 3 basic principles of growth of their adequacy are proposed: "localization" of solutions, direct account of influencing of the individual on process of decision making ("subjectivity of objectivity") and reduction of influencing of the individual psychosomatic characteristics of the subject (" objectivity of subjectivity ") are offered. The principles are illustrated on mathematical models of decision making in ecologically- economic and social systems.