7 resultados para browsing
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.
Resumo:
The purpose of this work is the development of database of the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions and provides remote access to information and hardware resources within the Intranet/Internet networks. The database is based on database management system Oracle9i. Client software was realized in Java language. The software was developed using Model View Controller architecture, which separates application data from graphical presentation components and input processing logic. The following graphical presentations were implemented: measurement of radiation spectra of beam and plasma objects, excitation function for non-elastic collisions of heavy particles and analysis of data acquired in preceding experiments. The graphical clients have the following functionality of the interaction with the database: browsing information on experiments of a certain type, searching for data with various criteria, and inserting the information about preceding experiments.
Resumo:
The value of knowing about data availability and system accessibility is analyzed through theoretical models of Information Economics. When a user places an inquiry for information, it is important for the user to learn whether the system is not accessible or the data is not available, rather than not have any response. In reality, various outcomes can be provided by the system: nothing will be displayed to the user (e.g., a traffic light that does not operate, a browser that keeps browsing, a telephone that does not answer); a random noise will be displayed (e.g., a traffic light that displays random signals, a browser that provides disorderly results, an automatic voice message that does not clarify the situation); a special signal indicating that the system is not operating (e.g., a blinking amber indicating that the traffic light is down, a browser responding that the site is unavailable, a voice message regretting to tell that the service is not available). This article develops a model to assess the value of the information for the user in such situations by employing the information structure model prevailing in Information Economics. Examples related to data accessibility in centralized and in distributed systems are provided for illustration.
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
This paper deals with the classification of news items in ePaper, a prototype system of a future personalized newspaper service on a mobile reading device. The ePaper system aggregates news items from various news providers and delivers to each subscribed user (reader) a personalized electronic newspaper, utilizing content-based and collaborative filtering methods. The ePaper can also provide users "standard" (i.e., not personalized) editions of selected newspapers, as well as browsing capabilities in the repository of news items. This paper concentrates on the automatic classification of incoming news using hierarchical news ontology. Based on this classification on one hand, and on the users' profiles on the other hand, the personalization engine of the system is able to provide a personalized paper to each user onto her mobile reading device.
Resumo:
In this paper we propose an approach for cost-effective employing of semantic technologies to improve the efficiency of searching and browsing of digital artwork collections. It is based on a semi-automatic creation of a Topic Map-based virtual art gallery portal by using existing Topic Maps tools. Such a ‘cheap’ solution could enable small art museums or art-related educational programs that lack sufficient funding for software development and publication infrastructure to take advantage of the emerging semantic technologies. The proposed approach has been used for creating the WSSU Diggs Gallery Portal.
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.