8 resultados para automorphism of groups
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Николай Янков - Класифицирани са с точност до еквивалетност всички оптимални двоични самодуални [62, 31, 12] кодове, които притежават автоморфизъм от ред 7 с 8 независими цикъла при разлагане на независими цикли. Използвайки метода за конструиране на самодуални кодове, притежаващи автоморфизъм от нечетен прост ред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от получените кодове имат тегловна функция, каквато досега не бе известно да съществува.
Resumo:
Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи.
Resumo:
2000 Mathematics Subject Classification: 12F12.
Resumo:
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
∗ This work was supported in part by the Bulgarian NSF under Grant MM-901/99
Resumo:
*Partially supported by NATO.
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.