3 resultados para automated resource discovery
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Resource discovery is one of the key services in digitised cultural heritage collections. It requires intelligent mining in heterogeneous digital content as well as capabilities in large scale performance; this explains the recent advances in classification methods. Associative classifiers are convenient data mining tools used in the field of cultural heritage, by applying their possibilities to taking into account the specific combinations of the attribute values. Usually, the associative classifiers prioritize the support over the confidence. The proposed classifier PGN questions this common approach and focuses on confidence first by retaining only 100% confidence rules. The classification tasks in the field of cultural heritage usually deal with data sets with many class labels. This variety is caused by the richness of accumulated culture during the centuries. Comparisons of classifier PGN with other classifiers, such as OneR, JRip and J48, show the competitiveness of PGN in recognizing multi-class datasets on collections of masterpieces from different West and East European Fine Art authors and movements.
Resumo:
Access to Digital Cultural Heritage: Innovative Applications of Automated Metadata Generation Edited by: Krassimira Ivanova, Milena Dobreva, Peter Stanchev, George Totkov Authors (in order of appearance): Krassimira Ivanova, Peter Stanchev, George Totkov, Kalina Sotirova, Juliana Peneva, Stanislav Ivanov, Rositza Doneva, Emil Hadjikolev, George Vragov, Elena Somova, Evgenia Velikova, Iliya Mitov, Koen Vanhoof, Benoit Depaire, Dimitar Blagoev Reviewer: Prof., Dr. Avram Eskenazi Published by: Plovdiv University Publishing House "Paisii Hilendarski" ISBN: 978-954-423-722-6 2012, Plovdiv, Bulgaria First Edition
Resumo:
In this paper RDPPLan, a model for planning with quantitative resources specified as numerical intervals, is presented. Nearly all existing models of planning with resources require to specify exact values for updating resources modified by actions execution. In other words these models cannot deal with more realistic situations in which the resources quantities are not completely known but are bounded by intervals. The RDPPlan model allow to manage domains more tailored to real world, where preconditions and effects over quantitative resources can be specified by intervals of values, in addition mixed logical/quantitative and pure numerical goals can be posed. RDPPlan is based on non directional search over a planning graph, like DPPlan, from which it derives, it uses propagation rules which have been appropriately extended to the management of resource intervals. The propagation rules extended with resources must verify invariant properties over the planning graph which have been proven by the authors and guarantee the correctness of the approach. An implementation of the RDPPlan model is described with search strategies specifically developed for interval resources.