5 resultados para allocation rules for networks

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is focused on a parallel JAVA implementation of a processor defined in a Network of Evolutionary Processors. Processor description is based on JDom, which provides a complete, Java-based solution for accessing, manipulating, and outputting XML data from Java code. Communication among different processor to obtain a fully functional simulation of a Network of Evolutionary Processors will be treated in future. A safe-thread model of processors performs all parallel operations such as rules and filters. A non-deterministic behavior of processors is achieved with a thread for each rule and for each filter (input and output). Different results of a processor evolution are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by INTAS 00-626 and TIC 2003-09319-c03-03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an extended behavior of networks of evolutionary processors. Usually, such nets are able to solve NP-complete problems working with symbolic information. Information can evolve applying rules and can be communicated though the net provided some constraints are verified. These nets are based on biological behavior of membrane systems, but transformed into a suitable computational model. Only symbolic information is communicated. This paper proposes to communicate evolution rules as well as symbolic information. This idea arises from the DNA structure in living cells, such DNA codes information and operations and it can be sent to other cells. Extended nets could be considered as a superset of networks of evolutionary processors since permitting and forbidden constraints can be written in order to deny rules communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

his article presents some of the results of the Ph.D. thesis Class Association Rule Mining Using MultiDimensional Numbered Information Spaces by Iliya Mitov (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt University, Faculty of Science on 15 November 2011 in Belgium