7 resultados para algebra
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 17A50, 05C05.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.