2 resultados para Williamson, Ivan
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Pólya’s fundamental enumeration theorem and some results from Williamson’s generalized setup of it are proved in terms of Schur- Macdonald’s theory (S-MT) of “invariant matrices”. Given a permutation group W ≤ Sd and a one-dimensional character χ of W , the polynomial functor Fχ corresponding via S-MT to the induced monomial representation Uχ = ind|Sdv/W (χ) of Sd , is studied. It turns out that the characteristic ch(Fχ ) is the weighted inventory of some set J(χ) of W -orbits in the integer-valued hypercube [0, ∞)d . The elements of J(χ) can be distinguished among all W -orbits by a maximum property. The identity ch(Fχ ) = ch(Uχ ) of both characteristics is a consequence of S-MT, and is equivalent to a result of Williamson. Pólya’s theorem can be obtained from the above identity by the specialization χ = 1W , where 1W is the unit character of W.
Resumo:
Digitization offers excellent opportunities for the preservation and safe-keeping of valuable library collections. The article recounts the first coordinated attempts of “Ivan Vazov” Public Library – Plovdiv at digitizing some of its treasured collections such as manuscripts, early printed books and archives through partner projects and revealing them to the world community.