12 resultados para Weakly LindelÖf Determined Space

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B26, 46B03, 46B04.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Петра Г. Стайнова - Квази-линдельофовите пространства са въведени от Архангелски като усилване на слабо-линдельофовите. В тази статия се разглеждат няколко свойства на квази-линдельофовите пространства и се правят сравнения със съответни ре- зултати за линдельофовите и слабо-линдельофовите пространства. Дадени са няколко примера, включително на слабо-линдельофово пространство, което не е квази-линдельофово; на пространство, което е топологично произведение на две линдельофови, но не е дори квази-линдельофово, и на пространство, което е квази-линдельофово, но не Суслиново. Накрая са поставени няколко отворени въпроси.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54H05, 03E15, 46B26

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper considers vector discrete optimization problem with linear fractional functions of criteria on a feasible set that has combinatorial properties of combinations. Structural properties of a feasible solution domain and of Pareto–optimal (efficient), weakly efficient, strictly efficient solution sets are examined. A relation between vector optimization problems on a combinatorial set of combinations and on a continuous feasible set is determined. One possible approach is proposed in order to solve a multicriteria combinatorial problem with linear- fractional functions of criteria on a set of combinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 53A07, 53A35, 53A10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B30, 46B03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 14Q05, 14Q15, 14R20, 14D22.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.