34 resultados para Weak Polynomial Identities
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.
Resumo:
000 Mathematics Subject Classification: Primary 16R50, Secondary 16W55.
Resumo:
2000 Mathematics Subject Classification: 16R10, 16R20, 16R50
Resumo:
2000 Mathematics Subject Classification: 16R50, 16R10.
Resumo:
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30
Resumo:
2000 Mathematics Subject Classification: Primary 17A32, Secondary 17D25.
Resumo:
2000 Mathematics Subject Classification: Primary 17A50, Secondary 16R10, 17A30, 17D25, 17C50.
Resumo:
∗ Partially supported by INTAS grant 97-1644
Resumo:
Research partially supported by INTAS grant 97-1644
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff
Resumo:
The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that the real sequence {μk} k≥0 is a weakly increasing zerodiminishing sequence if and only if there exists σ ∈ {+1,−1} and an entire function n≥1, Φ(z)= be^(az) ∏(1+ x/αn), a, b ∈ R^1, b =0, αn > 0 ∀n ≥ 1, ∑(1/αn) < ∞, such that µk = (σ^k)/Φ(k), ∀k ≥ 0.