6 resultados para User profile
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Traditional content-based filtering methods usually utilize text extraction and classification techniques for building user profiles as well as for representations of contents, i.e. item profiles. These methods have some disadvantages e.g. mismatch between user profile terms and item profile terms, leading to low performance. Some of the disadvantages can be overcome by incorporating a common ontology which enables representing both the users' and the items' profiles with concepts taken from the same vocabulary. We propose a new content-based method for filtering and ranking the relevancy of items for users, which utilizes a hierarchical ontology. The method measures the similarity of the user's profile to the items' profiles, considering the existing of mutual concepts in the two profiles, as well as the existence of "related" concepts, according to their position in the ontology. The proposed filtering algorithm computes the similarity between the users' profiles and the items' profiles, and rank-orders the relevant items according to their relevancy to each user. The method is being implemented in ePaper, a personalized electronic newspaper project, utilizing a hierarchical ontology designed specifically for classification of News items. It can, however, be utilized in other domains and extended to other ontologies.
Resumo:
In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
Recommender systems are now widely used in e-commerce applications to assist customers to find relevant products from the many that are frequently available. Collaborative filtering (CF) is a key component of many of these systems, in which recommendations are made to users based on the opinions of similar users in a system. This paper presents a model-based approach to CF by using supervised ARTMAP neural networks (NN). This approach deploys formation of reference vectors, which makes a CF recommendation system able to classify user profile patterns into classes of similar profiles. Empirical results reported show that the proposed approach performs better than similar CF systems based on unsupervised ART2 NN or neighbourhood-based algorithm.
Resumo:
Mobile messaging is an integral and vital part of the mobile industry and contributes significantly to worldwide total mobile service revenues. In today’s competitive world, differentiation is a significant factor in the success of the business communication. SMS (Short Message Service) provides a powerful vehicle for service differentiation. What is missing, however, is the availability of personalized SMS messages. In particular, the exploitation of user profile information allows a selection and content delivery that meets preferences and interests for the individual. Personalization of mobile messages is important in today’s service-oriented society, and has proven to be crucial for the acceptance of services provided by the mobile telecommunication networks. In this paper we focus on user profile description and the mechanism for delivering the relevant information to the mobile user in accordance with his/her profile.
Resumo:
The paper presents a different vision for personalization of the user’s stay in a cultural heritage digital library that models services for personalized content marking, commenting and analyzing that doesn’t require strict user profile, but aims at adjusting the user’s individual needs. The solution is borrowed from real work and studying of traditional written content sources (incl. books, manuals), where the user mainly performs activities such as underlining the important parts of the content, writing notes and inferences, selecting and marking zones of their interest in pictures, etc. In the paper a special attention is paid to the ability to execute learning analysis allowing different ways for the user to experience the digital library content with more creative settings.