3 resultados para Ultra-Low Power,
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.
Resumo:
This paper briefly reviews CMOS image sensor technology and its utilization in security and medical applications. The role and future trends of image sensors in each of the applications are discussed. To provide the reader deeper understanding of the technology aspects the paper concentrates on the selected applications such as surveillance, biometrics, capsule endoscopy and artificial retina. The reasons for concentrating on these applications are due to their importance in our daily life and because they present leading-edge applications for imaging systems research and development. In addition, review of image sensors implementation in these applications allows the reader to investigate image sensor technology from the technical and from other views as well.
Resumo:
This paper describes a method of signal preprocessing under active monitoring. Suppose we want to solve the inverse problem of getting the response of a medium to one powerful signal, which is equivalent to obtaining the transmission function of the medium, but do not have an opportunity to conduct such an experiment (it might be too expensive or harmful for the environment). Practically the problem can be reduced to obtaining the transmission function of the medium. In this case we can conduct a series of experiments of relatively low power and superpose the response signals. However, this method is conjugated with considerable loss of information (especially in the high frequency domain) due to fluctuations of the phase, the frequency and the starting time of each individual experiment. The preprocessing technique presented in this paper allows us to substantially restore the response of the medium and consequently to find a better estimate for the transmission function. This technique is based on expanding the initial signal into the system of orthogonal functions.