2 resultados para Troubles extériorisés
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The so called “Plural Uncertainty Model” is considered, in which statistical, maxmin, interval and Fuzzy model of uncertainty are embedded. For the last case external and internal contradictions of the theory are investigated and the modified definition of the Fuzzy Sets is proposed to overcome the troubles of the classical variant of Fuzzy Subsets by L. Zadeh. The general variants of logit- and probit- regression are the model of the modified Fuzzy Sets. It is possible to say about observations within the modification of the theory. The conception of the “situation” is proposed within modified Fuzzy Theory and the classifying problem is considered. The algorithm of the classification for the situation is proposed being the analogue of the statistical MLM(maximum likelihood method). The example related possible observing the distribution from the collection of distribution is considered.
Resumo:
For inference purposes in both classical and fuzzy logic, neither the information itself should be contradictory, nor should any of the items of available information contradict each other. In order to avoid these troubles in fuzzy logic, a study about contradiction was initiated by Trillas et al. in [5] and [6]. They introduced the concepts of both self-contradictory fuzzy set and contradiction between two fuzzy sets. Moreover, the need to study not only contradiction but also the degree of such contradiction is pointed out in [1] and [2], suggesting some measures for this purpose. Nevertheless, contradiction could have been measured in some other way. This paper focuses on the study of contradiction between two fuzzy sets dealing with the problem from a geometrical point of view that allow us to find out new ways to measure the contradiction degree. To do this, the two fuzzy sets are interpreted as a subset of the unit square, and the so called contradiction region is determined. Specially we tackle the case in which both sets represent a curve in [0,1]2. This new geometrical approach allows us to obtain different functions to measure contradiction throughout distances. Moreover, some properties of these contradiction measure functions are established and, in some particular case, the relations among these different functions are obtained.