2 resultados para Tilted-time window model
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper addresses the task of learning classifiers from streams of labelled data. In this case we can face the problem that the underlying concepts can change over time. The paper studies two mechanisms developed for dealing with changing concepts. Both are based on the time window idea. The first one forgets gradually, by assigning to the examples weight that gradually decreases over time. The second one uses a statistical test to detect changes in concept and then optimizes the size of the time window, aiming to maximise the classification accuracy on the new examples. Both methods are general in nature and can be used with any learning algorithm. The objectives of the conducted experiments were to compare the mechanisms and explore whether they can be combined to achieve a synergetic e ect. Results from experiments with three basic learning algorithms (kNN, ID3 and NBC) using four datasets are reported and discussed.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.