20 resultados para The car rental salesman problem
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The article presents the exact algorithm for solving one case of the job-scheduling problem for the case when the source matrix is ordered by rows.
Resumo:
In this paper it is explained how to solve a fully connected N-City travelling salesman problem (TSP) using a genetic algorithm. A crossover operator to use in the simulation of a genetic algorithm (GA) with DNA is presented. The aim of the paper is to follow the path of creating a new computational model based on DNA molecules and genetic operations. This paper solves the problem of exponentially size algorithms in DNA computing by using biological methods and techniques. After individual encoding and fitness evaluation, a protocol of the next step in a GA, crossover, is needed. This paper also shows how to make the GA faster via different populations of possible solutions.
Resumo:
Research partially supported by INTAS grant 97-1644
Resumo:
Decision making and technical decision analysis demand computer-aided techniques and therefore more and more support by formal techniques. In recent years fuzzy decision analysis and related techniques gained importance as an efficient method for planning and optimization applications in fields like production planning, financial and economical modeling and forecasting or classification. It is also known, that the hierarchical modeling of the situation is one of the most popular modeling method. It is shown, how to use the fuzzy hierarchical model in complex with other methods of Multiple Criteria Decision Making. We propose a novel approach to overcome the inherent limitations of Hierarchical Methods by exploiting multiple criteria decision making.
Resumo:
AMS Subj. Classification: 90C27, 05C85, 90C59
Resumo:
MSC 2010: 42C40, 94A12
Resumo:
ACM Computing Classification System (1998): I.2.8, G.1.6.
Resumo:
This paper presents a Variable neighbourhood search (VNS) approach for solving the Maximum Set Splitting Problem (MSSP). The algorithm forms a system of neighborhoods based on changing the component for an increasing number of elements. An efficient local search procedure swaps the components of pairs of elements and yields a relatively short running time. Numerical experiments are performed on the instances known in the literature: minimum hitting set and Steiner triple systems. Computational results show that the proposed VNS achieves all optimal or best known solutions in short times. The experiments indicate that the VNS compares favorably with other methods previously used for solving the MSSP. ACM Computing Classification System (1998): I.2.8.
Resumo:
The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.
Resumo:
This paper presents an InfoStation-based multi-agent system facilitating a Car Parking Locator service provision within a University Campus. The system network architecture is outlined, illustrating its functioning during the service provision. A detailed description of the Car Parking Locator service is given and the system entities’ interaction is described. System implementation approaches are also considered.
Resumo:
Portfolio analysis exists, perhaps, as long, as people think about acceptance of rational decisions connected with use of the limited resources. However the occurrence moment of portfolio analysis can be dated precisely enough is having connected it with a publication of pioneer work of Harry Markovittz (Markovitz H. Portfolio Selection) in 1952. The model offered in this work, simple enough in essence, has allowed catching the basic features of the financial market, from the point of view of the investor, and has supplied the last with the tool for development of rational investment decisions. The central problem in Markovitz theory is the portfolio choice that is a set of operations. Thus in estimation, both separate operations and their portfolios two major factors are considered: profitableness and risk of operations and their portfolios. The risk thus receives a quantitative estimation. The account of mutual correlation dependences between profitablenesses of operations appears the essential moment in the theory. This account allows making effective diversification of portfolio, leading to essential decrease in risk of a portfolio in comparison with risk of the operations included in it. At last, the quantitative characteristic of the basic investment characteristics allows defining and solving a problem of a choice of an optimum portfolio in the form of a problem of quadratic optimization.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
The problem of decision functions quality in pattern recognition is considered. An overview of the approaches to the solution of this problem is given. Within the Bayesian framework, we suggest an approach based on the Bayesian interval estimates of quality on a finite set of events.
Resumo:
This paper considers the problem of concept generalization in decision-making systems where such features of real-world databases as large size, incompleteness and inconsistence of the stored information are taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to processing of real value attributes in large data tables. Also the search algorithm of the significant attributes combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of insignificant attributes into intervals.
Resumo:
This article discusses a solution method for Hamilton Problem, which either finds the task's solution, or indicates that the task is unsolvable. Offered method has significantly smaller requirements for computing resources than known algorithms.